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Absorption coefficient

H. Melchior, “Laser Handbook”, Vol. 1 pp 725-835 (1972).
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Photoconductive gain
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Photoconductor high-frequency response
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p-i-n photodiode

+ _

d

p i n

-V

En
er

gy
E-

fi
el

d

Position

Position

p-i-n photodiode: Undoped or
lightly doped semiconductor
inserted between p and n-type
semiconductor. p and n-type regions
may be higher bandgap than intrinsic region.
Low noise and capable of high-speed.
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p-i-n photodiode
p-i-n photodiode: Undoped or
lightly doped semiconductor
inserted between p and n-type
semiconductor. p and n-type regions
may be higher bandgap than intrinsic region.
Low noise and capable of high-speed.
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Two types of p-i-n photodiodes
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p-i-n high-frequency response

Time constant of hole transit across intrinsic region:

RC time constant:
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BW-efficiency product
(surface illuminated p-i-n)

Stephen B. Alexander. Optical communication receiver design. 1997.
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Avalanche photodiode (APD)
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APD: High-field region accelerates
carriers resulting in impact ionization
and creation of new carriers (avalanche
breakdown). Unlike the p-i-n, the APD
has gain. A single e-h pair can create
a cascade of several others.
Downside is additional noise.
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Impact ionization and multiplication factor
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Usually k << 1 is desirable for good noise properties (more on this later).
For example, silicon is an excellent material for APD.
When only electrons are injected into the gain region, it can be shown:
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Material
Si
Ge
InGaAs

k-value
0.02-0.05
0.7-1.0
0.5-0.7
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APD high-frequency response

High-frequency response limited by hole transit time and gain build-up time.
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Summary

Photodetector

Photoconductor

p-i-n

APD

Pros

Simple device,
Gain,
Very fast

Low noise,
Fast

Gain,
Fast,
Increased
sensitivity
(sometimes)

Cons

High noise

No gain

Complicated,
Multiplication noise
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Recommended reading: 
S.D. Personick, Optical Detectors and Receiver. J. Light. Technol. Vol. 26, No. 9, 2008.


